<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Polymer PVDF as Implant Material</td>
<td>2</td>
</tr>
<tr>
<td>2. Product Design - Essential Mesh Parameters</td>
<td>3</td>
</tr>
<tr>
<td>3. DynaMesh® visible Technology</td>
<td>3-4</td>
</tr>
<tr>
<td>4. Inguinal Hernia Repair</td>
<td>4</td>
</tr>
<tr>
<td>5. Ventral Hernia Repair</td>
<td>5</td>
</tr>
<tr>
<td>6. Ventral Hernia Prevention</td>
<td>5</td>
</tr>
<tr>
<td>7. Parastomal Hernia Repair</td>
<td>5-6</td>
</tr>
<tr>
<td>8. Parastomal Hernia Prevention</td>
<td>7</td>
</tr>
<tr>
<td>9. Hiatal Hernia Repair</td>
<td>7</td>
</tr>
<tr>
<td>10. Mesh Fixation</td>
<td>8</td>
</tr>
</tbody>
</table>
1. Polymer PVDF as Implant Material

 PVDF as a new polymer for the construction of surgical meshes.
 Biomaterials 23:3487–3493

 Comparison of long-term biocompatibility of PVDF and PP meshes.

 Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.
 Surgical technology international 21:21

 Polyvinylidene fluoride monofilament sutures: can they be used safely for long-term anastomoses in the thoracic aorta?
 Artif Organs 19:1190–1199

 Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair.

 Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model.

 Damage to the spermatic cord by the Lichtenstein and TAPP procedures in a pig model.
 Surgical Endoscopy 25:146–152. https://doi.org/10.1007/s00464-010-1148-1

 Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery.
 ASAIO J 44:199–206

52. Silva RA, Silva PA, Carvalho ME (2007)
 Degradation studies of some polymeric biomaterials: Polypropylene (PP) and polyvinylidene difluoride (PVDF).
 THERMEC 2006, Pts 1-5 539–543:573–576

 New polymer for intra-abdominal meshes-PVDF copolymer.
2. Product Design - Essential Mesh Parameters

 New objective measurement to characterize the porosity of textile implants.

 Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes.

 The lightweight and large porous mesh concept for hernia repair.

52. Silva RA, Silva PA, Carvalho ME (2007)
 Degradation studies of some polymeric biomaterials: Polypropylene (PP) and polyvinylidene difluoride (PVDF).
 THERMEC 2006, Pts 1-5 539–543:573–576

 An overview of crucial mesh parameters.
 World Journal of Gastrointestinal Surgery

3. DynaMesh® visible Technology

 First In-Human Magnetic Resonance Visualization of Surgical Mesh Implants for Inguinal Hernia Treatment.
 Invest Radiol. https://doi.org/10.1097/RLI.0b013e31829806ce

 In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides.

 First human magnetic resonance visualisation of prosthetics for laparoscopic large hiatal hernia repair.

 Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh.
 Surgical Endoscopy 32:2822–2830. https://doi.org/10.1007/s00464-017-5987-x
4. Inguinal Hernia Repair

Prospective Multicenter Blinded Randomized Study Comparing PP and PVDF Mesh Implants in Lichtenstein Procedure with Respect to Pain and Recurrence.
JSM Surgical Procedures 1:

Initial experience in laparoscopic bilateral inguinal hernia repair (TEP) with new anatomical mesh with large pore and low weight (Dynamesh Endolap) in short stay (6 months follow-up).
Ambulatory Surgery 22:
5. Ventral Hernia Repair

Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair.

Principles of laparoscopic repair of ventral hernias.

Magnetic Resonance–Visible Meshes for Laparoscopic Ventral Hernia Repair.
https://doi.org/10.4293/JSLS.2014.00175

Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh.
Surgical Endoscopy 32:2822–2830. https://doi.org/10.1007/s00464-017-5987-x

Polyvinylidene Fluoride Mesh (PVDF, DynaMesh®-IPOM) in The Laparoscopic Treatment of Incisional Hernia: A Prospective Comparative Trial versus Gore® ePTFE DUALMESH® Plus.
Surgical technology international 28:147–151

6. Ventral Hernia Prevention

Effectiveness of Prophylactic Intraperitoneal Mesh Implantation for Prevention of Incisional Hernia in Patients Undergoing Open Abdominal Surgery: A Randomized Clinical Trial.

7. Parastomal Hernia Repair

Laparoskopische Reparation der parastomal Hernie.
Der Chirurg 81:988-992. https://doi.org/10.1007/s00104-010-1933-3

Parastomal Hernia Repair with a 3D Funnel Intraperitoneal Mesh Device and Same-Sided Stoma Relocation: Results of 56 Cases.

Magnetic resonance visible 3-D funnel meshes for laparoscopic parastomal hernia prevention and treatment.

Laparoscopic stoma relocation for parastomal hernia treatment by using a magnetic resonance visible three-dimensional implant.

A Novel Technique for Parastomal Hernia Repair Combining a Laparoscopic and Ostomy-Opening Approach.

Changes in the Surgical Management of Parastomal Hernias Over 15 Years: Results of 135 Cases.

Hybrid Approaches for Complex Parastomal Hernia Repair.
Journal of the College of Physicians and Surgeons Pakistan 26:72-73

75. Köhler G (2019)
Prinzipien und Parallelen der Prävention und Reparation parastomalher Hernien mit Netzen.
Chirurg. https://doi.org/10.1007/s00104-019-01047-z

Leading article: Methods paper New minimally invasive technique of parastomal hernia repair · methods and review.

Urology 131:245-249. https://doi.org/10.1016/j.urology.2019.05.006
8. Parastomal Hernia Prevention

 Prevention of parastomal hernias by prophylactic use of a specially designed intraperitoneal onlay mesh (Dynamesh IPST®).

 Preventing parastomal hernias with systematic intraperitoneal specifically designed mesh.
 BMC Surgery 17:. https://doi.org/10.1186/s12893-017-0237-7

 Prevention of parastomal hernias with 3D funnel meshes in intraperitoneal onlay position by placement during initial stoma formation.

 Magnetic resonance visible 3-D funnel meshes for laparoscopic parastomal hernia prevention and treatment.

75. Köhler G (2019)
 Prinzipien und Parallelen der Prävention und Reparation parastomaler Hernien mit Netzen.
 Chirurg. https://doi.org/10.1007/s00104-019-01047-z

 Prevention of parastomal hernia after abdominoperineal excision with a prophylactic three-dimensional funnel mesh.

9. Hiatal Hernia Repair

 First human magnetic resonance visualisation of prosthetics for laparoscopic large hiatal hernia repair.
 Hernia 19:975-982. https://doi.org/10.1007/s10029-015-1398-x

 Follow Up Data of MRI-Visible Synthetic Meshes for Reinforcement in Large Hiatal Hernia in Comparison to None-Mesh Repair - A Prospective Cohort Study.
 Front Surg 6:. https://doi.org/10.3389/fsurg.2019.00017
10. Mesh Fixation

Atraumatic laparoscopic intraperitoneal mesh fixation using a new laparoscopic device: an animal experimental study.

86. Wilson P (2020)
Laparoscopic intraperitoneal onlay mesh (IPOM) repair using n-butyl-2-cyanoacrylate (Liquiband Fix8TM) for mesh fixation: learning experience and short-medium term results.
Hernia. https://doi.org/10.1007/s10029-020-02144-3